wృec cbac

GCE MARKING SCHEME

PHYSICS
 AS/Advanced

SUMMER 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCE PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
PH1 1
PH2 7
PH3 12
PH4 17
PH5 24
PH6 39

Question			Marking details	Marks Available
1	(a) (b) (c) (d)	(i) (ii) (i) (ii) (i) (ii)	$\begin{aligned} & \text { Horizontal velocity }=\frac{1.20}{0.60}=2\left[.0 \mathrm{~m} \mathrm{~s}^{-1}\right] \\ & 0=u^{2}-2 \times 9.81 \times 0.44\left[\text { correct substitution into } v^{2}=u^{2}+2 a x\right] \\ & u=2.94\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \end{aligned}$ or $0=u-9.81 \times 0.30[\text { correct substitution into } v=u+a t](1)$ $u=2.94\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ [Other solutions possible] $\begin{aligned} & R=(4+8.64)^{1 / 2}(1)[\text { ecf from }(a)(\mathrm{i}) \text { and } / \text { or }(a)(\text { ii })] \\ & R=3.56\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \\ & \theta=55.8^{\circ} \text { ecf } \end{aligned}$ Force of gravity on earth due to grasshopper $F=3 \times 10^{-5} \times 9.81=2.9 \times 10^{-4}[\mathrm{~N}] \text { Accept } 0.3 \mathrm{~m}[\mathrm{~N}]$ Question 1 Total	1 2 2 1 1 1 1 [9]
2	(a) (b)	(i) (ii) (iii) (iv)	$\begin{aligned} & \mathrm{V} \mathrm{~A}^{-1} \text { and } \mathrm{W} \mathrm{~A}^{-2} \quad 2 \times(1) \\ & V=0.01 \times 450=4.5[\mathrm{~V}] \\ & 12 \mathrm{~V}-4.5 \mathrm{~V}[\mathbf{e c f}]=7.5[\mathrm{~V}] \\ & R=\frac{7.5}{0.01}(1 \text { for correct use of } 7.5 \text { or ecf })=750[\Omega](1) \text { or correct } \\ & \text { alternative } \\ & \frac{1}{750}=\frac{1}{900}+\frac{1}{R} \\ & R_{\text {variable resistor }}=4500[\Omega] \text { (substitution) } \end{aligned}$ Alternative solution to (iii) and (iv) $I \text { through } 900 \Omega=\frac{7.5}{900}=0.0083[\mathrm{~A}](1)$ I through variable resistor $=0.0017$ [A] (1) $\begin{equation*} R_{\text {variable resistor }}=\frac{7.5}{0.0017}=4500[\Omega] \tag{1} \end{equation*}$ Use of resistors in parallel formula to find total parallel resistance $=$ 750 [Ω] (1)	2 1 1 2 2

| Question | | Marking details | Marks
 Available |
| :--- | :--- | :--- | :--- | :---: |
| (c) | [No mark for stating circuit resistance decreases]
 Current in circuit increases (1) [accept explanation based on potential
 divider.
 Hence pd across 450Ω increases (1)
 Hence pd across 900Ω decreases (1) this mark can't be awarded
 unless it is correctly substantiated
 Alternative solutions:
 Resistance of parallel combination decreases (1)
 pd across parallel combination decreases (1)
 pd across 900Ω decreases (1)
 OR current through the variable resistor increases (1)
 current through the 900Ω decreases (1)
 pd across the 900Ω decreases (1)
 Question 2 total | 3 | |

Question				Marking details	Marks Available
3	(a)	(i)(ii)	[Free] electrons forced to move by applied pd (Need a reference to drift velocity or electron flow but does not need to be explicitly stated) (1) They collide with atoms/nuclei/ions/lattice of the wire (1) don't accept particles or molecules $\begin{aligned} & \text { Power }=\frac{1.8}{60}=0.03[\mathrm{~W}](1) \\ & R=\frac{0.03(\mathrm{ecf})}{1.6^{2}}=0.0117[\Omega] \end{aligned}$ Alternative solution possible for the first 2 marks using $V=\frac{W}{Q}$ and $\begin{aligned} & R=\frac{V}{I} \\ & \rho=\frac{0.0117 \times 2 \times 10^{-6}}{0.4}(1)[\text { ecf on } R] \\ & =5.9 \times 10^{-8}[\Omega \mathrm{~m}](1) \end{aligned}$ [NB free electrons not required to be labelled] Number of free electrons $=n A v t[$ or $n A l]$ (1) Total change $=n$ avte $\left[\begin{array}{ll}\text { or } \\ \text { nAle }\end{array}\right.$] (1) $I=\frac{n A v t e}{t}$ with cancelling shown [or $\frac{n A l e}{t}$, where $\frac{l}{t}=v$ shown] Volume defined either from diagram [e.g. A and l labelled as shown] or in body of derivation [e.g. vol = $A l$] and n identified correctly-for the first mark $\begin{aligned} & 1.6=6.4 \times 10^{28} \times 2 \times 10^{-6} \times v \times 1.6 \times 10^{-19}(1: \text { substitution }) \\ & v=7.8 \times 10^{-5}\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \end{aligned}$ (I) less than 1.6 A identified/circled (1) (II) the same as identified/circled (1) (III) half identified/circled (1) Question 3 Total		2
					4
	(b)	(i)			
					4
		(ii)			2
		(iii)			3

Question			Marking details	Marks Available
4	(a)	(i)	Water bath or method of heating shown. Wire [coiled or uncoiled] shown (1). Voltmeter and ammeter and power supply correctly connected or ohmmeter only shown (1) Thermometer clearly identifiable. (1) Subtract 1 mark for poorly drawn diagrams. Method of cooling water to $0^{\circ} \mathrm{C}$ not credited here. Method of cooling water to $0^{\circ} \mathrm{C}$ (1) [Can be credited from (i)] Resistance values taken [or](1) and I values taken and R calculated ..at different temperatures [minimum 5 implied or implication that a number of temperatures considered] (1) Method to reduce experimental error/ ensure accuracy e.g. water stirred/ resistance of leads/heat slowly/remove heat to allow temperature to settle (1) Accept repeat the experiment again or obtain readings whilst cooling down or using a digital thermometer. Don't accept just repeat readings. Graph of R vs θ drawn (1) $\left[-163{ }^{\circ} \mathrm{C}\right]$ is the temperature at which a sudden decrease in resistance occurs and the metal [alloy] (1) ...becomes a superconductor or resistance becomes zero (1) Liquid nitrogen [Accept liquid helium, liquid oxygen, liquid hydrogen] Question 4 Total	3 5

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Question} \& Marking details \& Marks Available

\hline 5 \& (a)

(b) \& | (i) |
| :--- |
| (ii) |
| (i) |
| (ii) | \& \& \[

$$
\begin{aligned}
& \text { power }=\frac{\text { work done or energy transferred }}{\text { time }} \\
& \text { doing work/ rate of energy transfer] } \\
& \text { [Accept rate of } \\
& \mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2} \times \mathrm{m}^{2} \times \mathrm{s}^{-1} \quad(1) \text { [Evidence of full correct methodology] } \\
& \mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}(1) \\
& E_{p}=70 \times 9.81 \times 215(1) \\
& {[=147641 \mathrm{~J}]} \\
& E_{k}=1 / 2(770)(35)^{2}(1) \\
& {[=4285 \mathrm{~J}]} \\
& E_{\text {lost }}=147641-42875(1)[=104766]\left(\text { ecf on both } E_{p} \text { and } E_{k}\right) \\
& F=\frac{104766}{1600}=65.5[\mathrm{~N}](1)\left(\text { ecf on } E_{\text {lost }}\right) \\
& \text { Alternative solution: } \\
& \text { using } v^{2}=u^{2}+2 a x \\
& P=\frac{104766}{46} \text { ecf (1) } \\
& =2277 \mathrm{~J} \mathrm{~s}^{-1} \text { or W (1) UNIT mark }
\end{aligned}
$$

\] \& | 2 |
| :--- |
| 4 |
| 2 |
| [9] |

\hline 6 \& (a)

(b) \& (i)

(ii) \& \[
$$
\begin{array}{r}
\text { (I) } \\
\text { (II) } \\
\text { (III) }
\end{array}
$$

\] \& | Moment $=F d$ (1) [award only if clear diagram shown] / if no right angle in diagram then perpendicular must be included in definition $\begin{aligned} & \left(F\left(\sin 40^{\circ}\right)(1) \times 0.4\right)(1)=((12 \times 0.9)+(22 \times 1.8))(1) \\ & F=196[\mathrm{~N}] \text { shown } \end{aligned}$ |
| :--- |
| Vertical component of force in strut $=126[\mathrm{~N}]$ (1) |
| Accept $128[\mathrm{~N}]$ or $129[\mathrm{~N}]$ if $F=200 \mathrm{~N}$ is used. |
| Vertical downward arrow shown at hinge. (1) |
| Vertical force on bar due to hinge $=92[\mathrm{~N}]$ (1) ecf |
| Question 6 Total | \& 2

3

3

\hline
\end{tabular}

Question			Marking details	Marks Available
1	(a)	(i)	In phase [Accept: in step.]	1
		(ii) (i)	Same amplitude everywhere [Accept: amplitude gets less and less.]	1
	(b)	(i)	$v=500 \mathrm{~mm} \mathrm{~s}^{-1}$ or $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ or $T=0.03 \mathrm{~s}$. Accept without units. (1) Attempted use of $f=\frac{v}{\lambda}$ not $c=3 \times 10^{8} \mathrm{~ms}^{-1}$) or $f=\frac{1}{T}$ or by implication (1) 33 [Hz] (1)	3
		(ii)	Working shows crests have moved $\frac{\lambda}{3}$ or 5 mm or by implic Positions convincing by eye (1) Accept at 5 mm or third distance between crests. Fewer than 3 lines shown award 1 mark only.	2
	(c)	(i)	$80 \mathrm{~mm}, 320 \mathrm{~mm}$ and 15 mm correctly put in double slit equation (1) states or implies that first const int is at 60 mm from axis. (1) concludes that there is dest int at P (1) - Give 1 mark if candidate claims first const int at 120 mm , having put in 40 mm instead of 80 mm for slit separation, and another mark if goes on to conclude that neither dest not const at P. - If equation used 'backwards', putting in 30 mm and finding 7.5 mm for λ award 1 mark and $2^{\text {nd }}$ mark if also states that dest int at P. For the $3^{\text {rd }}$ mark it must be carefully explained why destructive interference at P for $\lambda=15 \mathrm{~mm}$ Alternative solution: Path difference $=7.7 \pm 0.1 \mathrm{~mm}$ (1) This is equal to / approximately equal to $\frac{\lambda}{2}$ (1) Hence destructive interference will occur (1)	3
		(ii)	Diffraction is spreading of waves at slits (1) Without which waves wouldn't overlap (or superpose) (1) Question 1 total	[12]

Question		Marking details	Marks Available	
2	$\left(\begin{array}{l}\text { (a) }\end{array}\right.$	(i)λ and d correctly inserted (nm is fine) in equation or by implic (1) 26° $62^{\circ} \quad(1)$ (ii)	Beams drawn at 0° and at two different angles one side of normal (1) 2 beams either side of normal with some regard for symmetry (1) ecf on 1 angle found in (i) Only 3 beams emerge (this must be stated in words) [Accept: no second order beams.] (1) First order beams at greater angle to zeroth (a calculation is acceptable) or equivalent (1) Reference to colours is irrelevant Question 2 total	2

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Question} \& Marking details \& Marks Available

\hline 3 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

 \& I \&

1.6 [m]

0.4 [m], 1.2 [m], $2.0[\mathrm{~m}]$

$t_{1}=\frac{T}{4}$ or $T=0.02[\mathrm{~s}]$

$t_{1}=0.005 \mathrm{~s}$ (1) UNIT mark

down, up, down

half sinusoid: up, down or both (1)

$c=80\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ and $\lambda=4.8[\mathrm{~m}]$ or frequency of fundamental $=$ third frequency of $3^{\text {rd }}$ harmonic or by implication (1)

$$
f=17[\mathrm{~Hz}]
$$

Question 3 Total

 \&

1

2

1

3

[8]
\end{tabular}

\hline 4 \& (a) \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (i) |
| (ii) |
| (iii) | \& \& | $\sin \theta=1.331 \sin 40.36^{\circ}$ or by implication (1) |
| :--- |
| 60° (1) Accept 59.5° |
| Not total + attempt at justification even if not worth next mark (1) |
| For the $2^{\text {nd }}$ mark either: |
| Light got in at P or gets out at R, so can get out at \mathbf{Q} [as angles in water the same] |
| or $1.331 \sin 40.36$ reshown to be <1 |
| or $C=49^{\circ}$ |
| $v_{\text {violet }}<v_{\text {red }}+$ attempt at justification even if not worth next mark e.g. |
| violet bends more (1) |
| For the $2^{\text {nd }}$ mark either: |
| Violet must have larger n therefore smaller v |
| or bending caused by light travelling more slowly in water than in air, so violet must travel most slowly. |
| Speed in glass $=\frac{360}{1.75 \times 10^{-6}}\left[=2.06 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right]$ |
| or by implication (1) |
| $n=1.46$ (1) must be to 3 sig figs |
| $C=75^{\circ}$ or by implication (1) |
| $1.46 \sin 75^{\circ}=n_{\text {clad }}\left[\sin 90^{\circ}\right.$] [Accept 1.5 for 1.46] or by implic (1) |
| $n_{\text {clad }}=1.41$ [1.45 if $n_{\text {core }}$ taken as 1.50] (1) |
| Award 1 mark only for: |
| $1.46 \sin 15^{\circ}=n_{\text {clad }}\left[\sin 90^{\circ}\right]$ |
| Larger angles give longer propagation times. [Accept longer dists.](1) So each pulse spread out over time on arrival or each pulse is less spread out if the angles are restricted (1) |
| So pulses might overlap (Accept pulses muddled) or overlap/muddling of pulses less likely if angles restricted. (1) |
| Award 1 mark only for less multimode dispersion |
| Question 4 Total | \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 5 \& (a)

(b)

(c) \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (i) |
| (ii) | \& I

II \& \begin{tabular}{l}
[Maximum] kinetic energy of emitted electron $[s]$

Photon energy

[Minimum] energy needed to release [or eject] electron from surface [or metal or solid]
$$
\begin{aligned}
& \phi=h f_{0} \text { or by implication (1) } \\
& f=3 f_{0}(1)
\end{aligned}
$$

attempt at gradient calculation even if slips, e.g. in $10^{\text {n }}$
$$
\begin{equation*}
h=6.8[\pm 0.2] \times 10^{-34}[\mathrm{~J} \mathrm{~s}] \tag{1}
\end{equation*}
$$

$\phi=3.1[\pm 0.1] \times 10^{-19}[\mathrm{~J}]$ Don't accept a negative ϕ

$\phi_{\text {sodium }}=\phi_{\text {caesium }}+0.6[$ or 0.7$] \times 10^{-19} \mathrm{~J}$ or parallel line or use of equation (1)

$\phi_{\text {sodium }}=3.7[\pm 0.3] \times 10^{-19}[\mathrm{~J}]$ ecf (1)

Question 5 Total

 \&

1

1

2

2

1

2

[10]
\end{tabular}

\hline 6 \& (a) \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (i) |
| (ii) | \& \& | $\Delta E=2.66-2.21 \times 10^{-18} \mathrm{~J}\left[=0.45 \times 10^{-18} \mathrm{~J}\right](1)$ |
| :--- |
| Use of $[\Delta] E=h f$ and $f=\frac{c}{\lambda}$ or $[\Delta] E=\frac{h c}{\lambda}$ (1) |
| $440 \mathrm{n}[\mathrm{m}]$ No ecf except on arithmetical slip in ΔE (1) $\begin{aligned} & \frac{15 \mathrm{~mW}}{\Delta E} \text { ecf [attempted] } \\ & 3.3 \times 10^{16}\left[\mathrm{~s}^{-1}\right] \text { ecf } \end{aligned}$ |
| Pumping energy taken as $3.07 \times 10^{-18} \mathrm{~J}$ (1) |
| 15% Accept 14% (1) ecf on photon energy |
| Passing photon causes drop from U to L (1) |
| With emission of another photon (1) Don't accept absorption of incident photon and emission of 2. |
| Process happens repeatedly and increases photon number (unless already made clear for single event). (1) |
| Stimulated emission events more probable (or equivalent) (1) Absorption events less probable (1) |
| Question 6 Total | \& | 3 |
| :--- |
| 2 |
| 2 |
| 3 |
| 2 |
| [12] |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
\(r=3.07 \times 10^{10} \mathrm{~m}\) and \(L=1.99 \times 10^{29} \mathrm{~W}\) or by implication (1) \(L=\sigma 4 \pi r^{2} T^{4}\) (1) \\
Correct algebra including fourth-rooting (1) \\
\(T=4150\) K UNIT mark (1) \\
[Take 5865 K arising from \(A=\pi r^{2}\) as ecf] If only Sun considered \(T=5776 \mathrm{~K}\) award 3 marks only \\
Attempted use of \(\lambda_{\text {max }}=700-750[\mathrm{~nm}]\) in Wien's Law (1) 3867-4140[K] (1) \\
Black body absorbs all [electromagnetic] radiation (accept light) falling on it. [Accept: Black body emits more radiation per second [or equivalent] [at every wavelength] than any other body at same temperature. \\
Don't accept it is a perfect emitter. \\
Spectrum peaks in red or equivalent. Accept infra-red. (1) \(r=44.2 R_{\odot}\) is sufficient. Must compare with the Sun. (1) \\
Question 7 Total
\end{tabular}} \& \begin{tabular}{l}
Marks Available \\
4
\end{tabular} \\
\hline 7 \& (a)
(b)
(c)
(d) \& \& \& \begin{tabular}{l}
4 \\
2 \\
1 \\
2 \\
[9]
\end{tabular} \\
\hline 8 \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(i)

(ii)

 \&

A meson is a quark-antiquark combi; (don't accept 2 quark combination)

a baryon is a 3 quark combi

Charge $=+\left(\frac{2}{3}\right)[e]+\left(\frac{1}{3}\right)[e]=+1[e]$ or equivalent

$0=-1+1$ or equivalent (which does not include $0=+1+-1$)

Weak; suggested by long decay time

or Weak; indicated by neutrino involvement

or Weak; indicated by change of quark flavour

Don't accept:

No quark involvement / (only) lepton involvement

$$
1+2+1=2+2 \text { or equivalent (e.g. } 1+3=2+2 \text {) }
$$

$2 \times(1)$ from:

- Mesons decay

- Strong force is short-range

- π^{+}and H repel

- Large energy needed to regroup groups

For the $3^{\text {rd }}$ mark:

The relevance of one of the above points must be argued

Question 8 Total

 \&

1

\hline
\end{tabular}

\hline
\end{tabular}

Tests 1 and 2
2015

TEST 1 - MARK SCHEME

SECTION A

Question		Marking details	Marks Available	
A1	(a)	(i)	Thickness of 10 coins measured to the nearest mm and thickness of one coin calculated correctly with unit (accept in range 19-22 mm) 5% (accept 2.5\% if resolution taken as 0.5 mm $)$ ecf	1
	(b)	(ii)	1	
	(c)	Diameter of 5 to 10 coins measured (1) Diameter correctly identified in the range 25-27 mm with unit (1) $\%$ uncertainty in diameter calculated correctly ecf (1)	Volume calculated correctly with unit (1) Total \% uncertainty $2 \times \%$ uncertainty in diameter + (a)(ii) Then converted correctly to an absolute uncertainty in volume ecf No sig fig penalty or unit penalty (1)	3
(d)	Any number from 45 to 53 must be a whole number no ecf Question Total	2		

Question			Marking details	Marks Available
A2	(a)		Answer given to nearest mm with unit	1
	(b)	(i) (ii)	Both answers less than 50.0 cm with $y=60.0$ - (a) no unit penalty Attempt to equate moments e.g. with or without g (1) Mass correctly calculated (1) Correct units g or kg consistent with answer (1)	1 3
	(c)		Mass of ball bearing $=(c)-(b)$ (ii) (1) Mass of ball bearing to within 1 g of centre value or 7 g No sig fig penalty (1)	2
	(d)		No the test tube would need to be more than 50.0 cm from the pivot or implied that the length of the ruler is not sufficient Question Total	1 [8]

| Question | | Marking details | Marks
 Available |
| :--- | :---: | :---: | :--- | :---: |
| A3 | (a) | At least two readings taken (1)
 Mean calculated correctly to
 the nearest cm with unit (1)
 This can be credited from the table | 2 |
| | (b) | Headings correct with consistent units H / lm and h / cm and mean (1)
 Three rows completed and means calculated correctly - no sig fig
 penalty (1) | 2 |
| (c) | Mean $h /$ /mean H or mean $H /$ mean h attempted three times (1)
 The following marks can't be awarded if the first mark has not been
 awarded.
 Not directly proportional (1)
 h / H or H / h is not a constant (1)
 Acept
 consistent with results | 3 | |
| (d) | Release mechanism / use of an assistant / larger drop height
 Don't accept - repeat readings | [8]Quer H / h is a constant (1) if
 Question Total | 1 |

SECTION B

| Question | | | Marks
 Available | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B4 | | | | |
| (a) | | | | |
| | | Voltmeter connected in parallel (1)
 Circuit drawn as shown with all symbols correct (don't allow variable
 resistor symbol) (1) | | |

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :--- | :--- | :---: |
| (f) | (i)4\% of 10.0 Ω calculated as $0.4 \Omega / \%$ difference for student's value
 calculated (1)
 Correct statement e.g. answer not within 4\% (1)
 Award 2 marks for statement that their answer is not within
 $9.6 \Omega-10.4 \Omega(2)$
 (ii)
 Gradient steeper/bigger (1)
 Intercept stays the same (1)
 Question Total | 2 | |

TEST 2 - MARK SCHEME AS TEST 1

Except:
A1 (a) (i) Thickness of 10 coins measured to the nearest mm and thickness of one coin calculated correctly with unit (accept in range 16-21 mm)
(b) Diameter correctly identified in the range 23-26 mm with unit (1)
(d) Any number from 47 to 62 must be a whole number no ecf (1)

B4 (b) $1 / R$ all calculated correct and to 2 or 3 sig figs (1)

Question			Marking details	Marks Available
4	(a)	(i) (ii)	Application of conservation of momentum (1) $\begin{align*} & (0.36+0.18) v=(0.36 \times 0.40)+(0.18 \times(-0.10)) \text { correct eqn }(1) \\ & 0.54 v=0.126 \\ & v=0.23\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \text { to the right }(1)-\text { direction may be by implication } \\ & \text { Initial } \mathrm{KE}=\frac{1}{2}(0.36)(0.4)^{2}+\frac{1}{2}(0.18)(-0.10)^{2}=0.0297[\mathrm{~J}] \tag{1}\\ & \text { Final } \mathrm{KE}=\frac{1}{2}(0.36+0.18)(0.23)^{2}=0.0143[\mathrm{~J}] \\ & \text { KE lost }=0.0297-0.0143=0.0154[\mathrm{~J}] \\ & \text { as percentage: } \frac{0.0154}{0.0297} \times 100 \%=51.85[\%] \quad \text { (1) } \end{align*}$	3 3
	(b)	(i) (ii)	$\begin{align*} & h f=\frac{h c}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(633 \times 10^{-9}\right)}(\text { subs. (1) })=3.14 \times 10^{-19} \tag{1}\\ & N=\frac{(\mathrm{J}]}{\left(3.14 \times 10^{-3}\right)}(\text { substitution }(1))=3.18 \times 10^{-15} \tag{1} \end{align*}$	2 2
		(iii) (iv)	$\begin{aligned} & \text { component of momentum }=\frac{h}{\lambda} \cos 30^{\circ} \\ & =\frac{\left(6.63 \times 10^{-34}\right)}{\left(633 \times 10^{-9}\right)} \cos 30^{\circ}=9.07 \times 10^{-28} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \text { or Ns UNIT mark } \\ & -N \frac{h}{\lambda} \cos 30^{\circ}-\left(N \frac{h}{\lambda} \cos 30^{\circ}\right)=F \times 1 \quad\left(\text { application of } \mathrm{N} 2^{\text {nd }}\right. \text { law (1)) } \\ & F=-2\left(3.18 \times 10^{15}\right)\left(9.07 \times 10^{-28}\right)=-5.8 \times 10^{-12} \mathrm{~N} \\ & \text { Force on photon }=5.8 \times 10^{-12}[\mathrm{~N}] \quad \text { (1) } \end{aligned}$	1
			Allow ecf from (b) (iii) for the component of momentum	2
			Question 4 Total	[13]

	tion		Marking details	Marks Available
7	(a)		$27.3 \times 24 \times 60 \times 60=2.36 \times 10^{6}[\mathrm{~s}]$	
			$T=2 \pi \sqrt{\frac{d^{3}}{G\left(M_{1}+M_{2}\right)}}$	
			$d=\sqrt[3]{\left(\frac{T}{2 \pi}\right)^{2} G\left(M_{1}+M_{2}\right)} \text { rearrange (1) }$	
			$d=\sqrt[3]{\left(\frac{2.36 \times 10^{6}}{2 \pi}\right)^{2}\left(6.67 \times 10^{-11}\right)\left(6.00 \times 10^{24}+7.34 \times 10^{22}\right)} \begin{array}{r} \left(\text { accept } 7.34 \times 10^{22}\right. \text { ignored in formula) } \\ \text { substitution (1) } \end{array}$	
			$d=3.85 \times 10^{8}[\mathrm{~m}]=385000 \mathrm{k}[\mathrm{m}]$	3
	(b)	(i)	$x_{c m}=\frac{M_{2}}{M_{1}+M_{2}} d$	
			$\begin{aligned} & =\frac{7.34 \times 10^{22}}{\left(6.00 \times 10^{24}+7.34 \times 10^{22}\right)} \times 3.85 \times 10^{8}(\text { substitution (1)) } \\ & =4.65 \times 10^{6}[\mathrm{~m}] \quad \text { (1) }(\sim 4650 \mathrm{k}[\mathrm{~m}]) \end{aligned}$	2
		(ii)	The centre of mass is within the Earth ecf ($\sim 1710 \mathrm{~km}$ below the surface of the Earth)	1
	(c)		$G \frac{M_{1}}{x^{2}}=G \frac{M_{2}}{(d-x)^{2}}$ (1) - equality of the two fields in terms of x $\left(\frac{x}{d-x}\right)^{2}=\frac{M_{1}}{M_{2}}$	
			$x=\left(\frac{M_{1}}{M_{2}}\right)^{1 / 2}(d-x)$	
			$\begin{aligned} & x=\left(\frac{6.00 \times 10^{24}}{7.34 \times 10^{22}}\right)^{1 / 2}\left(3.85 \times 10^{8}-x\right) \quad \text { substitution (1) } \\ & x=\left(\frac{(9.04) \times\left(3.85 \times 10^{8}\right)}{10.04}\right) \quad \text { rearrange (1) } \\ & x=3.47 \times 10^{8}[\mathrm{~m} \text { from the Earth }] \quad(1) \end{aligned}$	4
			Question 7 Total	[10]

SECTION A

	tion		Marking details	Marks Available
1	(a)	(i)	84.6×10^{-9} [C] [for 4.7 nF$]$ (1)	2
			$73.8 \times 10^{-9}[\mathrm{C}][$ and 73.8 nC or clearly stated same for other 8.2 nF$]$ (1)	
		(ii)	$E=\frac{1}{2} C V^{2} \quad$ or other equation used correctly or C total $=8.8 \mathrm{nF}(1)$	
			Answer $=1.43 \times 10^{-6}[\mathrm{~J}]$ ecf on Q but not $V(1)$	2
	(b)	(i)	Points taken from the curve e.g. $Q_{0}=85 \mathrm{nC}$ and ($50 \mathrm{~ms}, 6 \mathrm{nC}$) (or $85 \mathrm{nC} / e=31 \mathrm{nC}$) (1)	
			Values substituted correctly e.g. $6=85 e^{-0.05} / C R \quad$ or $C R=18 \mathrm{~ms}$ (1)	
			Answer $R=3.8 \times 10^{6}[\Omega]$ (1) Award 1 mark for use of $\frac{\Delta Q}{t}$ tor $11 \mathrm{M} \Omega$	3
			Alternative: Tangent (1) Current (1) $R=3.8 \times 10^{-6}[\Omega]$ (1)	
		(ii) (iii)	$I=\frac{V}{R}$ used or tangent drawn at $t=0(1)$	
			$\text { Answer }=4.7 \times 10^{-6}[\mathrm{~A}] \operatorname{ecf}(1)$	2
			After $41 \pm 1 \mathrm{~ms} 10 \%$ charge left [or 90% discharged] Or other valid method e.g. taking logs and getting time (1)	
			83×10^{-3} [s] (first step can be implied) ecf (1)	2
			Question 1 Total	[11]

Question			Marking details	Marks Available
2	(a)	(i) (ii)	0 $\varphi=B \times l^{2}(1)$	1
			$\text { Answer }=4.32 \times 10^{-5}[\mathrm{~Wb}](1)$	2
	(b)		Change in flux or Faraday's law gives emf (1)	
			Complete circuit or accept emf gives current (1) Award 1 mark only for: Current due to Faraday's law	2
	(c)		Force / current / emf opposes the change (1)	
			Force on PQ opposite to SR or the force is clockwise (1)	2
	(d)		$I=\frac{V}{R} \quad \text { used (1) }$	
			$\begin{aligned} & A=\pi \frac{d^{2}}{4} \quad \text { or } \pi \times 3^{2}\left(\times 10^{-6}\right) \text { i.e. } \pi r^{2} \text { used (1) } \\ & R=\frac{\rho \times l}{A} \\ & \text { used (1) } \end{aligned}$	
			$\begin{aligned} & V=\frac{\Delta N \phi}{\Delta t} \quad \text { used (1) } \\ & \text { Answer }=0.19[\mathrm{~A}] \text { ecf on } \phi \text { and } \pi d^{2} \text { (1) } \end{aligned}$	5
			Question 2 Total	[12]

Question		Marking details	Marks Available
3	(a)	Low A numbers do fusion (or arrow / label used) (1) High A numbers do fission (or arrow / label used) (1) Moving toward high BE/nucleon (around Fe-56) or Fe-56 is the most stable (or low PE/nucleon or accept work done by strong nuclear force) (1) Higher BE/nucleon is more stable (or low PE/nucleon more stable or more work done more stable) (1)	4
(b)	1.1 ± 0.1 MeV identified from graph for ${ }_{1}^{2} \mathrm{H}(1)$ $\times 2=2.2$ [MeV] ecf (1)		

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline \multirow[t]{3}{*}{4} \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
360 \pm 10 \text { [minutes] }
\] \\
No [significant] drop after paper [no \(\alpha\)] (1) \\
[Small drop after aluminium] so small amount of \(\gamma\) being absorbed / most \(\gamma\) passes through i.e. could be \(\beta\) but some \(\gamma\) would be absorbed ok Or accept drop could be attributable to randomness of decay (1) \\
\(\gamma\) present because something gets through 3 mm Al or \(\gamma\) present because bigger drop after 10 cm Pb [than 3 mm Al] or \(\gamma\) present because only absorbed by the Pb (1)
\end{tabular} \& 1 \\
\hline \& (c) \& \[
\begin{aligned}
\& \text { Activity }=\frac{450}{0.006}=75000(1) \\
\& \text { Activity }=\lambda N \text { or } t_{\frac{1}{2}}=\frac{\ln 2}{\lambda} \text { used (1) } \\
\& N=2.34 \times 10^{9}(1)
\end{aligned}
\] \& \\
\hline \& \& \begin{tabular}{l}
Mass \(=99 \times 1.66 \times 10^{-27} \times 2.34 \times 10^{9}=3.84 \times 10^{-16} \mathrm{~kg}\) UNIT mark (1) ecf on \(A\) and \(t_{\frac{1}{2}}\) and \(N\) \\
Question 4 Total
\end{tabular} \& 4

$[8]$

\hline
\end{tabular}

Question			Marking details	Marks Available
5	(a)(b)		$n=\frac{12000}{18}(1)$	
			$B=\mu_{0} n I=0.019[\mathrm{~T}]$ (1)	2
		(i)	Either $B e v=\frac{m v^{2}}{r}$ or $\quad B e v=m \omega^{2} r$	
			$v=\omega r \quad$ and $\quad \omega=2 \pi f$ quoted (1)	
			Clear algebra (if not immediately understandable then not clear) (1)	3
		(ii)	$\begin{equation*} f=\frac{3.3 \times 6 \times 1.6 \times 10^{-19}}{2 \pi \times 12 \times 1.66 \times 10^{-27}} \tag{1} \end{equation*}$	
			Answer $=25.3 \times 10^{6}[\mathrm{~Hz}](1)$	2
		(iii)	$6 e \times 14.5 \mathrm{kV} \times 24[=2.09 \mathrm{MeV}](1)$	
			Conversion to J i.e. look out for $\times 1.6 \times 10^{-19}$ (1)	
			Equating some related energy to $\frac{1}{2} m v^{2}$ e.g. $\frac{1}{2} m v^{2}=14500$ (1)	
			Answer $=5.8 \times 10^{6}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ (1) (ecf on these values only 2.4×10^{6} and 4.1×10^{6} which correspond to $q=1 e$ and 12 kicks respectively)	4
			Question 5 Total	[11]

SECTION B

SECTION C

Question				Marking details	Marks Available
10	(a)	(i)	Strong (covalent) bonds between ions in structure. Accept molecules arranged irregularly or amorphous structure present (1) [No dislocations present] so no slip (accept no movement of dislocations). Accept different sized atoms seize up the structure (1) Do not accept 'untangle'. Scratches (on surface) weaken material or break surface bonds. Scratches have stress concentrations at their tips- can be awarded from diagram. Cracks propagate through material. Correct direction of bending is to open the crack [ANY 2] (credit well annotated diagrams) [Local] stress cannot be relieved by slip / plastic flow/ dislocation movement. Compression (1]) [Do not accept 'stress] More difficult for cracks to develop/ widen/ propagate (1) $\text { Gradient shown }=80 \mathrm{GPa} \text { e.g. } \frac{800 \times 10^{6}}{0.01} \text { seen. }$ Area under graph $=\left[1 / 2 \times 0.01 \times 800 \times 10^{6}+1 / 2 \times 0.08 \times 100 \times 10^{6}+\right.$ $\left.0.08 \times 800 \times 10^{6}\right]=72\left[\mathrm{MJ} \mathrm{m}^{-3}\right]$ (1) Volume $=\pi \times\left(1.25 \times 10^{-3}\right)^{2} \times 2.5=12.3 \times 10^{-6}\left[\mathrm{~m}^{3}\right]$ (1) Work done $=72 \times 10^{6} \times 12.3 \times 10^{-6}=884$ [J] (1) (ecf on both area and volume). Initial straight line of same gradient. (1) Yield point at 1000 MPa . (1) Linear plastic region of small slope (accept zero slope) stopping at 5% strain. (1) (I) Creep: [Gradual/slow/Over time] AND [extension/stretching/deformity or increase in strain] (1) (under a constant load). Necking: Localised (or reference to 'section' or 'region') thinning (of structure/material before breaking- accept diagram) (1) II) Same shaped curve but steeper gradient (1) Stopped at 15% and $t<400 \mathrm{hrs}$ (approx.) (1) Repeated bending, stretching or hammering of metal alloy (1) Dislocations become tangled / traffic jam effect or new dislocations created (1) Stopping each other from moving (or inhibiting plastic deformation or collect at grain boundaries) (1) Question 10 Total		2
		(ii)			2
		(iii)			2
	(b)	(i)			1
		(ii)			3
		(iii)			3
		(iv)			2
					2
		(v)			3
					[20]

Question			Marking details	Marks Available
11	(a)	(i)	A/B/D	1
		(ii)	C	1
		(iii)	A	1
	(b)		$\begin{aligned} & V=\frac{h c}{e \lambda} \text { (must rearrange) (1) } \\ & 6.2 \times 10^{4} \mathrm{~V} \text { (must have valid unit) (1) } \end{aligned}$	2
	(c)		Reduces scattering/ spreading accept 'ensures (X-rays) are all parallel / perpendicular [to the patient] (1) [leading to] sharper image / better resolution (1)	2
	(d)	(i)	Radio (waves)	1
		(ii)	Cause Hydrogen atoms to resonate (1) Flip alignment producing a magnetic field (1)	2
		(iii)	Not good for dense objects/bone/ Uncomfortable/ Claustrophobic/cannot be used with pacemakers/ expensive	1
	(e)	(i)	Depolarization of ventricles/ repolarisation of atria (1) Contraction of ventricles (1)	2
		(ii)	Repolarization of ventricles (1) Relaxation of ventricles/ ventricles return to normal (1) Do NOT accept ventricles expand	2
	(f)	(i)	Doppler	1
		(ii)	$\begin{aligned} & 0.4 \times \frac{1500}{500}=2 v(1) \\ & v=0.6\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \text { allow } 1 \text { mark only for } 1.2 \mathrm{~m} \mathrm{~s}^{-1}(1) \end{aligned}$	2
	(g)	(i)	Gamma $/ \gamma$	1
		(ii)	Very expensive/need a cyclotron / particle accelerator Ignore any reference to radiation dose	1
			Question 11 Total	[20]

DATA ANALYSIS TASK - Mark Scheme

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& \multicolumn{7}{|c|}{Marking details} \& Marks Available \\
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
(a) \\
(b)
\end{tabular}} \& \& \multicolumn{7}{|l|}{Correct circuit diagram including voltmeter, switch and resistor with all the correct symbols given} \& \multirow[b]{11}{*}{2

2

5}

\hline \& \& Wavelength \& $$
\frac{1}{\lambda}
$$ \& \multicolumn{3}{|l|}{Minimum voltage

\[
V_{\min }(\mathrm{V})

\]} \& \multirow[t]{2}{*}{| Mean $V_{\text {min }}$ |
| :--- |
| (V) |} \& \multirow[t]{2}{*}{Absolute uncertainty $V_{\text {min }}(\mathrm{V})$} \&

\hline \& \& \& $(\mu \mathrm{m})^{-1}$ \& 1 \& 2 \& 3 \& \& \&

\hline \& \& 470 \& 2.13 \& 2.48 \& 2.45 \& 2.42 \& 2.45 \& 0.03 \&

\hline \& \& 520 \& 1.92 \& 2.21 \& 2.25 \& 2.27 \& 2.24 \& 0.03 \&

\hline \& \& 560 \& 1.79 \& 2.06 \& 2.11 \& 2.03 \& 2.07 \& 0.04 \&

\hline \& \& 590 \& 1.69 \& 2.00 \& 1.94 \& 1.97 \& 1.97 \& 0.03 \&

\hline \& \& 620 \& 1.61 \& 1.86 \& 1.89 \& 1.94 \& 1.90 \& 0.04 \&

\hline \& \& 660 \& 1.52 \& 1.74 \& 1.78 \& 1.82 \& 1.78 \& 0.04 \&

\hline \& (i) \& | Values of $\frac{1}{\lambda}$ number of s.f. e.g. As above Correct unit fo as $\frac{1}{\lambda} / \mu m^{-1}$ |
| :--- |
| Alternatively $\frac{1}{\lambda / 10^{-6} \mathrm{~m}}, \frac{1}{\lambda}$ |
| [Note: the mar values given.] |
| Mean values 3 s.f. (1) Uncertainty in 1 s.f. (1) | \& | letermin |
| :--- |
| or 0.002 |
| ${ }^{1}{ }_{\lambda}^{1}$ give |
| [accept |
| $\frac{1}{\lambda / n \mathrm{~m}}$ |
| k given |
| of $V_{\text {min }}$ d |
| $V_{\text {min }}$ det | \& \& | tly to |
| :--- |
| 192, 0 |
| tly exp |
| . (1) |
| $\lambda / 10$ |
| m) ${ }^{-1}$ |
| ectly |
| corre |
| correc | \& | s.f. [ac |
| :--- |
| 0179 essed |
| -9m |
| press |
| tly [as |
| [as | \& | 2 s.f.] |
| :--- |
| λ in as ab |
| ${ }^{9} \mathrm{~m}^{-1}$ |
| it cons |
| ve] and |
|] and | \& | consistent |
| :--- |
| (1) or expressed $\left.10^{-9} \mathrm{~m}\right)^{-1}$ |
| th with the |
| pressed to |
| essed to | \&

\hline (c) \& \& \multicolumn{7}{|l|}{| Axes labelled, with units [e.c.f. from table] and correct orientation [i.e. $V_{\text {min }}$ on vertical axis] (1) |
| :--- |
| Suitable scales chosen so that the data points occupy at least $1 / 2$ of each axis and not involving awkward factors, e.g. 3. (1) |
| All points plotted correctly to within $\pm 1 / 2$ small square division. (1) All error bars plotted correctly. (1) |
| Correct steepest and least steep lines consistent with the error bars ecf |
| (1) See exemplification graphs on pages 42-45. |} \&

\hline
\end{tabular}

Question		Marking details	Marks Available
(d)	(i)	There are no marks for the answer yes or no - the marks are for the discussion. - Data points are consistent with a straight line / best fit line with a positive gradient [which is consistent with the equation] (1) - The [straight] line of best fit goes through all the error bars (1) - But [without calculation] we cannot determine if the data are consistent with an intercept $=0$ [so we cannot be sure that the data are consistent with the equation] [or equiv.] (1) Large triangle used (should be close to the extremities of the line of best fit) or 2 equivalent suitable points clearly indicated on the graph or clearly implied by the calculation [see below] (1) Both gradients of the graph calculated correctly. Data points used must be on the line graph N.B. no sig fig or unit penalty $(1+1)$ ecf allowed for incorrect max/min lines / ignore errors of powers of 10 Example of clear implication [from 3rd graph - on page 44] $\begin{array}{ll} \text { Max gradient }=\frac{2.575-1.605}{2.20-1.40} & =1.213[\mathrm{~V} \mathrm{\mu m}] \\ \text { Min gradient }=\frac{2.499-1.712}{2.20-1.40} & =0.984[\mathrm{~V} \mathrm{\mu m}] \end{array}$ Note: the values of both gradients are $\sim 1 \times 10^{-6}[\mathrm{~V} \mathrm{~m}]$. If $\frac{1}{\lambda}$ is expressed in nm^{-1} the numerical values of the gradient will be $\sim 1 \times 10^{3}$ Mean gradient calculated correctly [the expected answer from examples in (ii) is $\sim 1.10 \times 10^{-6}$] allow ecf from (ii). (1) Absolute uncertainty calculated (1) [can be inferred from correct value of percentage uncertainty] [the expected answer is 0.1×10^{-6}] Percentage uncertainty calculated correctly (1) [expected answer from examples in (ii) is $\sim 10 \%$] ecf Allow 1 or 2 sig figs h calculated correctly with a valid unit [expected value $5.9(4) \times 10^{-34} \mathrm{~J} \mathrm{~s}$] using the gradient (1) no sig fig penalty Absolute uncertainty calculated correctly [expected value $\sim 0.7 \times 10^{-34} \mathrm{~J}$ s] and written with the value of h, $\text { e.g. }(5.9 \pm 0.7) \times 10^{-34}[\mathrm{~J} \mathrm{~s}] \text { or }(5.94 \pm 0.66) 10^{-34}[\mathrm{~J} \mathrm{~s}] \text { ecf }(1)$ Comment on accuracy of result [e.g. the calculated value of h is more than 5% away from the accepted value so the value is not accurate] (1) Note: the reasoning must be valid and clearly expressed. Percentage difference between the given value of h and the result in (iv) calculated correctly [expected answer $\sim 11 \%$] or 5% of the given value of h calculated $\left[0.3 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right.$] (1)	3
(e)		$V_{\min }=1.11 \mathrm{~V} \text { or } 1.1 \mathrm{~V}$ The value of wavelength is in the infra-red part of the spectrum [or equiv, e.g. wavelength longer than the visible region of spectrum].	1 1
		Question Total	[25]

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

